Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Pulm Med ; 19(1): 31, 2019 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-30732588

RESUMO

BACKGROUND: Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) has previously been demonstrated to play a pro-inflammatory role in allergic airways disease and COPD through the upregulation of the E3 ubiquitin ligase MID1 and the subsequent deactivation of protein phosphatase 2A (PP2A). METHODS: Biopsies were taken from eight IPF patients presenting to the Second Affiliated Hospital of Jilin University, China between January 2013 and February 2014 with control samples obtained from resected lung cancers. Serum TRAIL, MID1 protein and PP2A activity in biopsies, and patients' lung function were measured. Wild type and TRAIL deficient Tnfsf10-/- BALB/c mice were administered bleomycin to induce fibrosis and some groups were treated with the FTY720 analogue AAL(s) to activate PP2A. Mouse fibroblasts were treated with recombinant TRAIL and fibrotic responses were assessed. RESULTS: TRAIL in serum and MID1 protein levels in biopsies from IPF patients were increased compared to controls. MID1 levels were inversely associated while PP2A activity levels correlated with DLco. Tnfsf10-/- and mice treated with the PP2A activator AAL(s) were largely protected against bleomycin-induced reductions in lung function and fibrotic changes. Addition of recombinant TRAIL to mouse fibroblasts in-vitro increased collagen production which was reversed by PP2A activation with AAL(s). CONCLUSION: TRAIL signalling through MID1 deactivates PP2A and promotes fibrosis with corresponding lung function decline. This may provide novel therapeutic targets for IPF.


Assuntos
Proteínas dos Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Fibrose Pulmonar/patologia , Ligante Indutor de Apoptose Relacionado a TNF/sangue , Fatores de Transcrição/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Estudos de Casos e Controles , China , Colágeno/metabolismo , Feminino , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Knockout , Proteínas dos Microtúbulos/genética , Pessoa de Meia-Idade , Proteínas Nucleares/genética , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Proteínas/genética , Proteínas/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , Transdução de Sinais , Ligante Indutor de Apoptose Relacionado a TNF/genética , Fatores de Transcrição/genética , Ubiquitina-Proteína Ligases/metabolismo
2.
Nat Med ; 19(2): 232-7, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23334847

RESUMO

Allergic airway inflammation is associated with activation of innate immune pathways by allergens. Acute exacerbations of asthma are commonly associated with rhinovirus infection. Here we show that, after exposure to house dust mite (HDM) or rhinovirus infection, the E3 ubiquitin ligase midline 1 (MID1) is upregulated in mouse bronchial epithelium. HDM regulates MID1 expression in a Toll-like receptor 4 (TLR4)- and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-dependent manner. MID1 decreases protein phosphatase 2A (PP2A) activity through association with its catalytic subunit PP2Ac. siRNA-mediated knockdown of MID1 or pharmacological activation of PP2A using a nonphosphorylatable FTY720 analog in mice exposed to HDM reduces airway hyperreactivity and inflammation, including the expression of interleukin-25 (IL-25), IL-33 and CCL20, IL-5 and IL-13 release, nuclear factor (NF)κB activity, p38 mitogen-activated protein kinase (MAPK) phosphorylation, accumulation of eosinophils, T lymphocytes and myeloid dendritic cells, and the number of mucus-producing cells. MID1 inhibition also limited rhinovirus-induced exacerbation of allergic airway disease. We found that MID1 was upregulated in primary human bronchial epithelial cells upon HDM or rhinovirus exposure, and this correlated with TRAIL and CCL20 expression. Together, these findings identify a key role of MID1 in allergic airway inflammation and links innate immune pathway activation to the development and exacerbation of asthma.


Assuntos
Alérgenos/imunologia , Asma/etiologia , Proteínas dos Microtúbulos/fisiologia , Proteínas Nucleares/fisiologia , Infecções por Picornaviridae/complicações , Proteína Fosfatase 2/antagonistas & inibidores , Proteínas/fisiologia , Rhinovirus , Fatores de Transcrição/fisiologia , Ubiquitina-Proteína Ligases/fisiologia , Animais , Células Cultivadas , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...